한 대의 GPU 컴퓨터로 처리할 수 있는 세계 최고 성능의 연산 프레임워크 개발
인공지능 분야에서 지식 체계나 데이터베이스를 그래프로 저장하고 활용하는 사례가 급증하지만, 일반적으로 복잡도가 높은 그래프 연산은 GPU 메모리의 제한으로 인해 매우 작은 규모의 그래프 등 비교적 단순한 연산만 처리할 수 있다는 한계가 있다. 우리 연구진이 25대의 컴퓨터로 2,000초가 걸리던 연산을 한 대의 GPU 컴퓨터로 처리할 수 있는 세계 최고 성능의 연산 프레임워크를 개발하는데 성공했다.
우리 대학 전산학부 김민수 교수 연구팀이 한정된 크기의 메모리를 지닌 GPU를 이용해 1조 간선 규모의 초대규모 그래프에 대해 다양한 연산을 고속으로 처리할 수 있는 스케줄러 및 메모리 관리 기술들을 갖춘 일반 연산 프레임워크(일명 GFlux, 지플럭스)를 개발했다고 27일 밝혔다.
연구팀이 개발한 지플럭스 프레임워크는 그래프 연산을 GPU에 최적화된 단위 작업인 ‘지테스크(GTask)’로 나누고, 이를 효율적으로 GPU에 배분 및 처리하는 특수한 스케줄링 기법을 핵심 기술로 한다. 그래프를 GPU 처리에 최적화된 자체 개발 압축 포맷인 HGF로 변환해 SSD와 같은 저장장치에 저장 및 관리한다.
기존 표준 포맷인 CSR로 저장할 경우, 1조 간선 규모의 그래프 크기가 9테라바이트(TB)에 이르지만, HGF 포맷을 활용하면 이 크기를 4.6테라바이트(TB)로 절반 가까이 줄일 수 있다. 또한 GPU에서는 메모리 정렬 문제로 그간 사용되지 않았던 3바이트의 주소 체계를 최초로 활용, GPU 메모리 사용량을 약 25% 절감했다.
%20%EC%9C%A4%ED%9D%AC%EC%9A%A9%20%EB%B0%95%EC%82%AC%EA%B3%BC%EC%A0%95,%20%ED%95%9C%EB%8F%99%ED%98%95%20%EB%B0%95%EC%82%AC%EA%B3%BC%EC%A0%95,%20%EC%98%A4%EC%84%B8%EC%97%B0%20%EB%B0%95%EC%82%AC%EA%B3%BC%EC%A0%95,%20%EA%B9%80%EB%AF%BC%EC%88%98%20%EA%B5%90%EC%88%98.jpg)
김민수 교수 연구팀은 삼각형 개수 세기*와 같은 고난도 그래프 연산을 통해 지플럭스 기술의 성능을 검증했다.
*삼각형 개수 세기: 그래프에서 서로 연결된 세 개의 정점이 이루는 삼각형 형태의 관계를 모두 찾고 개수를 세는 연산으로 데이터 분석 및 인공지능에서 널리 활용됨
약 700억 간선 규모의 그래프를 대상으로 한 실험에서, 기존의 최고 성능 기술은 고속 네트워크로 연결된 컴퓨터 25대를 이용해 약 2,000초가 걸리던 삼각형 개수 세기 연산을 지플럭스는 GPU가 장착된 단일 컴퓨터만으로 약 두배 빠른 1,184초 만에 처리하는 데 성공했다.
이는 단일 컴퓨터로 삼각형 개수 세기 연산을 성공적으로 처리한 현재까지 알려진 최대 규모의 그래프다.
김민수 교수는 “최근 그래프 RAG(검색증강생성), 지식 그래프, 그래프 벡터 색인 등 대규모 그래프에 대한 고속 연산 처리 기술의 중요성이 점점 커지고 있다”며, “지플럭스 기술이 이러한 문제를 효과적으로 해결할 것으로 기대한다”고 말했다.
이번 연구에는 전산학부 오세연, 윤희용 박사과정이 각각 제 1, 2 저자로, 김 교수가 창업한 그래프 딥테크 기업인 (주)그래파이 소속 한동형 연구원이 제3 저자로, 김 교수가 교신저자로 참여했고. 연구 결과는 IEEE 주최 국제데이터공학학술대회(ICDE, International Conference on Data Engineering)에서 지난 5월 22일에 발표됐다.
※ 논문제목: GFlux: A fast GPU-based out-of-memory multi-hop query processing framework for trillion-edge graphs
※ DOI: https://doi.ieeecomputersociety.org/10.1109/ICDE65448.2025.00075
한편, 이번 연구는 과기정통부 IITP SW스타랩과 한국연구재단 중견과제의 지원을 받아 수행됐다.
KCONTENTS
댓글 없음:
댓글 쓰기