뇌질환 치료의 전환점, 전자패치-초음파 기반 전자약으로 맞춤치료
동물실험에서 발작성 뇌파 왜곡없이 감지해 초음파로 뇌전증 제어 성공
뇌질환 환자별로 다르게 나타나는 증상 정도를 뇌파로 진단하고 동시에 맞춤으로 치료하는 시대가 열렸다. 기초과학연구원(IBS, 원장 노도영) 뇌과학 이미징 연구단 손동희 연구위원(성균관대 전자전기공학부 교수) 연구팀과 신미경 연구위원(성균관대 글로벌바이오메디컬공학과 교수) 연구팀은 한국과학기술연구원 바이오닉스연구센터 김형민 책임연구원 연구팀과 공동으로 대뇌에 균일하게 밀착하고 견고히 부착되는 새로운 뇌 인터페이스 신축성 전자패치를 개발했다. 이를 통해 초음파 신경 자극에도 잡음 없는 뇌파를 계측해, 병리적 뇌파를 진단하면서 적시에 치료 조건을 조정하는 ‘환자맞춤형 뇌질환 제어 전자약1) 기술’을 최초로 구현했다.
[그림 1] 형상변형 대뇌피질접착 신축성 전자패치 개요 및 견고한 뇌 부착력
형상변형 대뇌피질접착 신축성 전자패치는 조직에 접착 가능한 하이드로젤, 금/티타늄 금속 전극 및 배선, 신축성 형상변형 기판으로 구성된다. 이는 설치류와 소 대뇌피질에 도움 없이 쉽고 간편하게 부착되며 매우 견고하게 밀착된다.
이를 극복하고자 초음파 자극에 따른 전기적 뇌파의 변화를 감지해 환자에게 맞는 자극 조건을 적시에 맞춤 제공하는 폐-루프3) 신경자극 방법이 제안됐다. 이처럼 초음파 기반의 폐-루프 신경치료체계를 확립하기 위해서는 대뇌 표면에서 발생하는 전기신호(대뇌피질전도)를 실시간 피드백 정보로 활용하는 뇌파 계측 기술이 필수적이다.
[그림 2] 신축성 전자패치의 형상변형 및 대뇌피질접착 원리
인체 내 습윤한 환경에서 하이드로젤의 젤화 특성에 의해 카테콜 기능기가 활성화돼 대뇌피질에 즉각 접착하기 시작한다. 동시에 신축성 형상변형 고분자는 대뇌피질의 굴곡에 맞추어 자발적으로 변형하며 빈틈없이 밀착된다. 대뇌피질에 견고히 부착되고 나면 형상변형 고분자 내부의 응력은 조기에 모두 해소돼, 뇌 조직에 물리적 압박 없이 장기간 안전하게 사용할 수 있다.
하지만 대뇌피질전도를 계측하는 기존 전극 소자는 강성이 높고 형태 적응성이 낮아 뇌 조직의 복잡한 곡면에 밀착할 수 없으며, 뇌 미세 움직임에 따라 표면에 견고히 고정될 수 없어 장기간 뇌파 계측이 어렵다. 또한, 초음파 자극 시 접촉면에서 음압4) 진동에 의한 극심한 잡음이 발생해, 신경자극술을 수행하는 동안 전기적 뇌파를 계측할 수 없어 피드백 정보로 활용하지 못했다.
[그림 3] 연구진이 개발한 신축성 전자패치의 대뇌 곡면 밀착 및 표면 부착 기능 평가를 위한 생체 외 비교 실험결과
(왼쪽 위) 생체조직에 부착된 신축성 패치 소재의 표면 접착 강도
(왼쪽 가운데 위) 형상변형 고분자의 온도 상승에 따른 강성(모듈러스) 변화량
(오른쪽 가운데 위) 형상변형 고분자의 신축 변형에 따른 변형 응력 추이
(오른쪽 위) 조직에 부착된 신축성 패치의 신축 변형에 따른 변형 응력 추이
(왼쪽 아래) 소뇌 조직에 적용된 신축성 패치 및 비교군 소재의 시간 경과에 따른 접촉면 형성 기능 시험 이미지.
(오른쪽 아래) 소뇌 조직에 부착된 신축성 패치 및 비교군 소재의 신축 변형에 따른 조직 부착 성능 실험 이미지.
[그림 4] 연구진이 개발한 전자패치의 초음파 잡음 저항성 뇌파 계측 성능 평가를 위한 생체 내 비교 실험결과
개발된 전자패치와 비교군 대뇌피질 전도 전극 소자(1. 상용 탄성 소재, 2. 접착 하이드로젤이 없는 신축성 형상변형 기판 소재, 3. 접착력이 없는 하이드로젤과 신축성 형상변형 기판이 함께 사용된 소재) 간의 쥐(rat) 대뇌 접촉면 사진이다. 마취된 쥐에 경두개 집속초음파로 신경 자극을 가해 대뇌피질전도를 모니터링한 결과, 비교군에 비해 새로운 전자패치는 초음파 잡음 없이 고품질의 뇌 신경 활동 반응 결과를 보였다.
이로써 연구진은 연속적인 초음파 자극 환경에서 병적인 뇌파의 강도를 실시간 진단하면서, 적시에 신경 자극 조건을 조정해 환자를 개별로 치료하는 환자맞춤형 뇌질환 제어 전자약 기술을 최초로 구현해 냈다.
이 기술을 뇌전증이 유발된 쥐 모델에 적용한 결과, 전자패치는 자유롭게 움직이는 동물에 이식된 상태에서도 안정적인 뇌파 모니터링 성능을 유지했다. 또한, 발작에 선행하는 병리적 고주파 신호를 정밀 포착해, 수 분 이내로 발생하는 본격적인 발작 증상을 정확히 예측하고 초음파 자극을 가동했다. 더 나아가, 초음파 자극이 가해지는 동안 발작성 뇌파를 왜곡 없이 감지해, 치료 효과가 충분치 않으면 자극 조건을 즉각 조정함으로써 발작 증상을 성공적으로 억제했다.
[그림 5] 전자패치-초음파 전자약의 뇌전증 제어 구현
전자약 시스템은 형상변형 대뇌피질접착 신축성 전자패치와 소형 경두개 집속초음파 변환기로 구성된다. 먼저, 쥐의 머리에 전자패치를 부착하고 소형 경두개 집속초음파 변환기를 이식해, 무손실 대뇌피질전도 피드백 폐-루프 발작 제어가 가능하도록 전자약 시스템을 구성했다. 그리고 뇌전증을 유발한 쥐를 대상으로 16채널 전자패치를 이용해 대뇌피질전도를 실시간으로 모니터링했다. 고품질 뇌파 측정은 집속초음파 전자약의 3단계 강도 변조 중에도 안정적으로 가능했으며, 폐-루프 뇌전증 제어를 성공적으로 달성했다.
연구결과는 9월 11일 전자공학 분야 최고 권위지인 ‘네이처 일렉트로닉스 (Nature Electronics, IF 33.7)’에 온라인 게재됐다.
댓글 없음:
댓글 쓰기